Kategorien
Veranstaltung

Rückblick:  Generative AI ChatGPT Strategie-Meetup am 03.07.2024

Generative AI ist gekommen, um zu bleiben: Denn sie schafft einen spürbaren Mehrwert! Auch die drei Referenten des Generative AI ChatGPT Strategie-Meetup am 03.07.2024 bei sipgate in Düsseldorf zeigten eindrucksvoll, wie Künstliche Intelligenz und innovative Technologien ihre Arbeit erleichtert, neue Produkte kreiert & Kunden begeistert.

Organisiert vom Team um Annette Walz der Düsseldorf Congress GmbH, kamen rund 100 Menschen im Düsseldorfer Medienhafen zusammen, um sich hierzu auszutauschen. Der ausgezeichnete Service und die coole Locations des Gastgebers sipgate unterstützten dies optimal.

Kristiina Coenen | Foto: Stefan Klemens

Nach der Begrüßung durch Annette betrat zuerst Kristiina Coenen die Bühne, die mit sportlichem Elan über den Einsatz von GenAI im Bereich Steuern bei Deloitte sprach und dies an interessanten Anwendungsfällen illustrierte.

Anschließend lieferte Marcel Mellor von sipgate ein strukturiertes Vorgehen, wie Unternehmen pragmatisch KI zwischen Chancen und Risiken nutzen können, was er ebenfalls mit seinen Erfahrungen als Product Lead des Telefonie-Anbieters und Tech-is-good-Blogger anhand von vier Hacks (User Innovation, Strategie, Produkt vor Technik, Compliance) untermauerte.

Marcel Mellor | Foto: Stefan Klemens

Für mich als People & HR Analyst sowie Arbeitspsychologe bei Schorberg Analytics waren auch die Daten von Marcel zum exponentiellen Wachstum der Nachfrage nach GenAI Fachkräften zwar nicht überraschend, doch eine gute Erinnerung zum Einsatz und Nutzen von Recruiting und Talent Analytics.

Und spannend war natürlich auch ihr mit ChatGPT und Gemini entwickeltes Produkt: Die automatisierte, schriftliche & rechtskonforme Zusammenfassung eines Telefongesprächs mit einem Kunden oder Patienten.

Esma Gulten | Foto: Stefan Klemens

Als dritte Rednerin erlebten wir Esma Gulten von Gizil: Ein europaweit tätiges Unternehmen mit Sitz in der Landeshauptstadt, das Öl-, Gas- und Chemieunternehmen mittels Laserscanning von Fabriken, KI und digitalen Zwillingen unterstützt, Kosten zu senken, Effizienz zu steigern und Mitarbeiter zu trainieren. Und die zum Schluss dazu aufforderte: Unleash Your Potential!*

Gegen 20 Uhr endete der offizielle Teil dieser tollen Veranstaltung mit einem Terminhinweis: Das zweite Navigator Festival der Düsseldorf Congress GmbH rund um GenAI wird am 04. April 2025 stattfinden. Und bis dahin: Die Zeit nutzen! Den Abwarten ist, wie Marcel anfangs darlegte, bei dieser Technologie natürlich keine Option!

Start der Gespräche zwischen den Teilnehmern | Foto: Stefan Klemens

Bei köstlichem Fingerfood, süßen Happen und kühlen Getränken (wie immer bei sipgate) ging es danach mit Gesprächen zwischen den Teilnehmern weiter – Bevor ich aufbrach, um einer anderen, sportlicheren Leidenschaft zu frönen: Salsa tanzen im Tanzhaus NRW (ohne KI mit Brain & Body ;-)).

Fazit: Es war zwar ein langer Tag, doch sehr abwechslungsreich und als wissbegieriger Mensch auch sehr erfüllende Stunden an diesem Abend. Vielen Dank an die Organisatoren, Redner, meine Gesprächspartner, allen Teilnehmern und das Team von sipgate dafür!

Meine Vorfreude auf weitere tolle KI- und HR Tech Events im Herbst steigt (z.B. Future Tech Fest). Deine auch?

Herzliche Grüße, Stefan Klemens

PS: Interessiert an einem Austausch mit mir über HR Tech, People Analytics, Online-Assessment oder Künstlich Intelligenz im Human Resource Management? Dann schreibe mir eine Nachricht per E-Mail oder LinkedIn, um ein Video-Telefonat zu vereinbaren – Oder klassisch: Telefonieren.

And: You like my work and the content I regularly share? Then I’m happy about a Like or comment on LinkedIn. Thank you! 🙂 🙋‍♂️🌳

* Hint: In my corresponding and earlier post on LinkedIn from July 5, 2024 regarding this event, there are some comments and further information about “Unleashing your potential” by Esma and me including a link to a video. So you might want to check these out if you are interested in Personality and Positive Psychology, main domains of interests, and how to design your life.

Kategorien
Event

Generative AI Conference at WHU in Düsseldorf

Dear guest!

Exiting event: Generative AI Conference at WHU – Otto Beisheim School of Management, Campus Düsseldorf, on Friday, September 22, 2023, 09:30 – 19:00 CEST. Organized by the WHU Entrepreneurship Roundtable.

Speakers are among others: Edip Saliba (Microsoft), Hamidreza Hosseini (Ecodynamics), Frank Tepper-Sawicki, EMBA (Dentons), Dr. Christopher Smolka (Scale-up.NRW, WHU).

More information in the LinkedIn profile of the organizers. Program and tickets available via Eventbrite.

A got my ticket today. What about you?

Are you going to the event also? Then let´s meet and talk! And if you cannot join and are interested in HR Tech like AI, People Analytics, Digital Assessment and its application? Connect with me and have a talk too.

All the good and best wishes!

Stefan Klemens

PS: You want to exchange ideas on people analytics, digital assessment or artificial intelligence in HRM? Then network, write a message and/or make an appointment for an online meeting. Or the classic way: phone call.

And: You like my work and the content I regularly share? Then I’m happy about a Like or comment on LinkedIn. Thank you! 🙂 🙋‍♂️🌳

Kategorien
Audiotipp

Podcast: ChatGPT ist besser geworden! Und besteht das bayerische Abitur

Lieber Gast!

ChatGPT ist besser geworden! Und besteht das bayerische Abitur!

Am 21. Juli 2023 hatte ich in diesem Newsblog-Artikel die Ergebnisse eines Forschungsberichts zusammen mit Kritik zu dieser Studie vorgestellt, der zeigen soll, dass die Leistung von ChatGPT abgenommen hat.

Durch weitere Recherchen für einen neuen, längern Newsblog-Artikel zu “KI-Chatbots, ChatGPT und alternative Modelle” (Vernetzen = Publikation erfahren) bin ich heute auf folgenden spannenden Inhalt gestoßen (den einige sicher schon kennen, doch wenn nicht …):

Im dieser Folge des Tagesschau-Podcasts 11KM “KI: Zwischen Abi und Apokalypse” vom 06.06.2023 berichtet der Autor Christian Schiffer im Gespräch mit Victoria Michalczak, ob die neue Version GPT-4 das bayerische Abitur nun besteht – Anknüpfend an seinen Beitrag von Anfang Februar 2023, wo die Version GPT-3.5 in den Fächern Deutsch, Mathematik und Informatik noch durch die Prüfungen fiel.

Spoiler: Der Chatbot erhält deutlich bessere Noten in allen Fächern in diesem Abi-Experiment des Bayerischen Rundfunks und “besteht mit Bravour”. Und zeigt dadurch, wie schnell ChatGPT sich entwickelt hat (und vermutlich ähnlich andere Large Language Models, die als Alternativen verfügbar sind).

Und: Der Autor, der derzeit ein Buch schreibt und den Chatbot als Sparringspartner dabei nutzt, möchte niemals mehr in einer Welt ohne KI leben. Oder wie er sagt: Wer einmal Farbfernsehen hatte, wird niemals zum Schwarz-Weiß-Gerät zurück kehren wollen.

Fazit: Ein differenzierter Beitrag, der sowohl auf die Chancen von KI hinweist, als auch deren mögliche Risiken diskutiert.

Hier geht es zum Podcast (Dauer: 30 Minuten):

https://www.ardaudiothek.de/episode/11km-der-tagesschau-podcast/ki-zwischen-abi-und-apokalypse/tagesschau/12733639/

Viel Freude beim Hören und alles Gute!

Herzliche Grüße, Stefan Klemens

🙂 🙋‍♂️🌳

PS: Lust auf einen Austausch zu People Analytics, Digital Assessment oder Künstliche Intelligenz im HRM? Dann vernetzen, Nachricht schreiben und / oder Termin für ein Online-Meeting vereinbaren. Oder klassisch: Telefonieren.

PS 1: Hier findet sich der Artikel von Christian Schiffer und Philipp Gawlik mit zusätzlichen Informationen zum neuen Abi-Experiment: https://www.br.de/nachrichten/netzwelt/chatgpt-ki-besteht-bayerisches-abitur-mit-bravour,TfB3QBw

PS 2: Anbei noch der Link zum Podcast (Dauer: 26 Minuten) über das erste Abi-Experiment mit dem Titel: “Schafft ChatGPT das Abi? (das bayerische!)” vom 20.02.2023: https://1.ard.de/11KM_ChatGPT_Abi

PS 3: Autor Christian Schiffer erzählt über sein Experiment auch in seinem Podcast unter: https://www.ardaudiothek.de/episode/umbruch-der-tech-podcast-von-br24/episode-56-wie-man-eine-ki-zum-abitur-schickt/br24/12704171/

Kategorien
Forschung

Forschung: Wird die Leistung von ChatGPT schlechter?

Verschlechtert sich die Leistung von ChatGPT? Ein kontrovers diskutierter Forschungsartikel untersucht diese Frage anhand der Version GPT-3.5 und GPT-4 von März und Juni 2023. Diese Large Language Models (LLMs) nutzen Menschen derzeit am häufigsten. Doch eine Analyse zeigt, dass die Abnahme der Qualität nur scheinbar ist und möglicherweise einen Fehler enthält.

Lieber Gast!

In der Hardcore KI-Gemeinde brodelt es: Denn der Forschungsartikel “How Is ChatGPT’s Behavior Changing over Time?” von Lingjiao Chen, Matei Zaharia und James Zou (Stanford University, University of California Berkley) zeigt, dass das aktuelle Modell GPT-4 vom Juni 2023 gegenüber dem Vorgänger GPT-3.5 als auch seiner eigenen Version von März 2023 bei bestimmten Aufgaben weniger leistungsfähig ist.

Und dies passe auch zum Gefühl vieler Nutzer, dass die Qualität des Chatbots von OpenAI & Microsoft in den letzten Monaten abnahm. In einer Antwort (siehe unten) analysieren Forscher der Uni Princeton, dass dies nicht der Fall ist, sondern vermutlich andere Gründe hat. Und auf Twitter hat Simon Boehm die Ergebnisse zum Coding unter die Lupe genommen und auf Twitter gepostet. Zudem habe ich weitere Hinweise zur Studie am Ende als Nachträge eingefügt. Doch zuerst zur Studie:

Die Studie von Chen, Zaharia und Zou (2023)

Die Forscher von Stanford & UC Berkley verglichen vier Versionen von ChatGPT für ihre Studie:

  • GPT-3.5 von März 2023
  • GPT-4 von März 2023
  • GPT-3.5 von Juni 2023
  • GPT-4 von Juni 2023

Jede dieser Versionen musste sich folgenden vier unterschiedlichen Aufgaben stellen:

  1. Mathematik-Probleme lösen
  2. Sensible bzw. gefährliche Fragen beantworten
  3. Programmiercode erzeugen
  4. Visuelles Schlussfolgern

Die Ergebnisse fassen die Autoren wie folgt zusammen:

»We find that the performance and behavior of both GPT-3.5 and GPT-4 can vary greatly over time. For example, GPT-4 (March 2023) was very good at identifying prime numbers (accuracy 97.6%) but GPT-4 (June 2023) was very poor on these same questions (accuracy 2.4%).

Interestingly GPT-3.5 (June 2023) was much better than GPT-3.5 (March 2023) in this task. GPT-4 was less willing to answer sensitive questions in June than in March, and both GPT-4 and GPT-3.5 had more formatting mistakes in code generation in June than in March.«

Die Antwort und Analyse von Narayanan und Kapoor (2023)

Doch wie Zain Kahn und sein Team in ihrem Newsletter Superhuman vom 20.07.2023 hinweisen, gibt es Gegenstimmen und andere Erfahrungen, insbesondere auf Twitter, wie die von Arvind Narayanan (Princeton CS prof. Director):

»We dug into a paper that’s been misinterpreted as saying GPT-4 has gotten worse. The paper shows behavior change, not capability decrease. And there’s a problem with the evaluation—on 1 task, we think the authors mistook mimicry for reasoning.«

Seine vollständige Antwort zusammen mit Sayash Kapoor lesen wir auf deren Blogseite “AI Snake Oil” unter dem Titel: “Is GPT-4 getting worse over time?” und dem Untertitel: “A new paper going viral has been widely misinterpreted”.

Und weiter heißt es in dieser Analyse von Narayanan & Kapoor (2023):

A new paper making the rounds is being interpreted as saying that GPT-4 has gotten worse since its release. Unfortunately, this is a vast oversimplification of what the paper found. And while the findings are interesting, some of the methods are questionable, so it’s worth digging into the details.”

Ihr Schlussfolgerung laut:

“In short, the new paper doesn’t show that GPT-4 capabilities have degraded. But it is a valuable reminder that the kind of fine tuning that LLMs regularly undergo can have unintended effects, including drastic behavior changes on some tasks. Finally, the pitfalls we uncovered are a reminder of how hard it is to quantitatively evaluate language models.”

+++ Update +++

Die Re-Analyse von Simon Böhm (2023)

Zur Überprüfung der Studie hat Simon Böhm (Replikationen sind eminent wichtig!) vom Astera Institute in Berkley, Kalifornien, die Ergebnisse zur Coding-Leistung der Versionen von GTP-4 re-analysiert. Er kommt zu folgendem Ergebnis, das er auf Twitter als Antwort auf den Post von Co-Autor Matei Zaharia teilt.

+++

Fazit

Bei der Nutzung von ChatGPT und anderen großen Sprachmodellen wie das neue “Bard” von Google, “Claude 2″ von Antrophic” oder den Open Source Modellen Bloom, OpenLLaMa, OpenAlpaca, Dolly 2 oder RedPajama (ich recherchiere hierzu und teste sowohl die kommerziellen und offenen Modelle; Vernetzen oder kontaktieren für Publikationsinfo) sollte man vorher wichtige Fragen klären.

Vor allem natürlich, wenn es um den offiziellen Einsatz in Organisationen von Chatbots oder generell Generativer Künstlicher Intelligenz geht (siehe hierzu das Beispiel AT&T in meinem letzten Newsblog-Beitrag).

Wie der Artikel und die Diskussion zeigen, dann nicht nur in rechtlicher und organisatorischer Hinsicht, sondern auch darum, worum es im Kern geht: Die Leistungsfähigkeit der Ergebnisse, die man durch passende Prompts (Fragen oder Aufforderungen an die KI-Software) bekommt – denn manche Chatbots erfinden Sachverhalte oder Quellen und verändern sich durch das Fine Tuning der Modelle.

Und gerade in Bezug auf die Qualität unterscheiden sich die Large Language Models, wie ich kürzlich in einem schönen Vergleich bei einem anderen Forscher sah.

Viel Freude beim Lesen und alles Gute!

Herzliche Grüße, Stefan Klemens

PS: Lust auf einen Austausch zu People Analytics, Digital Assessment oder Künstliche Intelligenz im HRM? Dann vernetzen, Nachricht schreiben oder Termin für ein Online-Meeting vereinbaren.

Nachträge

(1) 21.07.2023: Nach dem Hinweis von Paul McLeod auf LinkedIn habe ich mir den Post von Simon Boehm vom Astera Institute angeschaut und in meinem Newsblog-Artikel eingefügt.

(2) 21.07.2023: Hinweis: Der Co-Autor der Studie Matei Zaharia ist CTO von Databricks, die mit Dolly 2.0 einen Open Source Chatbot basierend auf Pythia von EleutherAI veröffentlicht haben. Vielleicht gibt es hier auch einen kleinen oder großen Wettkampf zwischen Vertretern der Open Source Large Language Models und kommerziellen Produkten wie OpenAI & Microsoft – ähnlich wie früher zwischen Linux und Windows (doch das “Kriegsbeil” ist ja laut Windows-Führungskräften begraben). Aber soweit bin ich (noch) nicht vernetzt mit dem Silicon Valley, um hier fundierte Antworten zu liefern. Da muss ich mal die Reporterin Yiwen Lu der New York Times fragen (siehe meinen Newsblog-Artikel von gestern: https://www.schorberg.de/the-new-york-times-ki-chatbots-an-us-arbeitplaetzen/ Oder wer weiß mehr?

(3) 22.07.2023: Wie ich heute morgen lese, gibt es von Bret Kinsella von https://voicebot.ai auf substack.com eine weitere Antwort auf die die Forschungsergebnisse von Chen, Zaharia & Zou (2023), wobei er u.a. auch die von mir bereits in meinem Newsblog-Artikel genannte Analyse von Narayanan und Kapoor (2023) aus ihrer AI Snake Oil Blogseite zitiert: https://synthedia.substack.com/p/new-research-says-gpt-4-is-getting

Quellen

Lingjiao Chen, Matei Zaharia und James Zou (2023). How Is ChatGPT’s Behavior Changing over Time? arXiv:2307.09009v1 [cs.CL] 18 Jul 2023.
https://arxiv.org/pdf/2307.09009.pdf

Arvind Narayanan & Sayash Kapoor (2023). Is GPT-4 getting worse over time? A new paper going viral has been widely misinterpreted. AI Snake Oil, 19.07.2023
https://www.aisnakeoil.com/p/is-gpt-4-getting-worse-over-time