Kategorien
Buch

Buchtipp: Data Science von Michael Oettinger

Buchtipp: Data Science – Eine praxisorientierte Einführung im Umfeld von Machine Learning, künstlicher Intelligenz und Big Data (2. Auflage) von Michael Oettinger.

Lieber Gast,

über Künstliche Intelligenz, besser: Maschinelles Lernen und Deep Learning wissen wir doch mittlerweile alle Bescheid, oder? In Zeiten von ChatGPT 3, Software die selbständig Bilder malt (DALL-E, Midjourney) – auch im Stile von Dalí, Picasso oder wen auch immer (was früher nur ein gewisser Herr Wolfgang B. konnte) und den tagtäglichen Angebotsvorschlägen von Amazon, LinkedIn oder Facebook sollten wir ja eigentlich einiges darüber wissen. Und auch was Data Science ist und man mit Big Data anstellen kann.

Nun als ich ab 2019 intensiver mit diesen Themen und danach ihrer Anwendung im Bereich Human Resources Management beschäftigte (People Analytics, HR Data Science, HR Analytics, Workforce Analytics – ok, Unterschiede in Details natürlich) und mich in der Programmiersprache Python, Big Data Analytics und Maschinellem Lernen weiterbildete, hätte ich mir hierzu auch ein kurzes, verständliches und praxisorientiertes Buch gewünscht, dass den gesamten Bereich überblickt und gut erklärt.

Leider fiel mir damals das folgende Einstiegs-Buch durch das Raster, und ich kämpfte mich durch einige andere durch (die jedoch mit Fokus auf Python oder Maschinellem Lernen (ML) natürlich deutlich intensiver auf diese Themen eingingen als mein heutiger Buchtipp).

Damit Du es leichter hast und weil ich es in diesen Tagen bei meiner Data Science Technologie Übersicht (White Paper in Progress!) und der kommenden Tool-Liste wieder häufiger in die Hand nahm, kommt hier also mein nächster Buchtipp:

Michael Oettinger (2020). Data Science – Eine praxisorientierte Einführung im Umfeld von Machine Learning, künstlicher Intelligenz und Big Data (2., erweiterte Auflage). Hamburg: tredition.

Es enthält acht Kapiteln auf 224 Seiten: (1) Einleitung, (2) Daten bereitstellen, (3) Daten analysieren, (4) Verfahren der Datenanalyse, (5) Vorgehensmodell für ML-Projekte, (6) Anwendungsfälle – Use Cases, (7) Abschluss und (8) Informationsquellen.

Wie die Reihenfolge der Kapitel zeigen, orientiert sich der Autor am Data Science (Datenanalyse)-Prozess: Von den Datenquellen wie Datenbanken, Hadoop oder Cloud geht über über zu den Analysewerkzeugen (Programmiersprachen, Data Science Plattformen, ML Bibliotheken) zu den statistisch-mathematischen Grundlagen von Data Mining, ML und Modellierung bis zum Data Science Prozess und einigen Anwendungsfällen in verschiedenen Branchen.

Ich mag das Buch und denke es ist auch ohne Vorkenntnisse gut zu lesen und zu verstehen (wenn gleich ich dies natürlich aufgrund meiner Vorkenntnisse nicht eindeutig sagen kann). Es ist wie gesagt ein kurzes Einstiegsbuch und kann daher auf die meisten Themen nicht tiefer eingehen (doch dazu gibt es eine Reihe von anderen guten Büchern!).

Auch wenn sich vieles aus dem Buch auf das Human Resources Management übertragen lässt, so gibt es doch im People Analytics einige Besonderheiten, die es zu beachten gilt, und die nicht im Fokus des Buches liegen (hier empfehle ich die Einführung von Steffi Rudel, 2021). Auch der Bereich Data Engineering wird bei Oettinger mit dem Kapitel „Daten bereitstellen“ natürlich nur ganz knapp dargestellt.

Doch es ist ja auch ein Einstiegsbuch und mir gefällt außerdem die Herangehensweise von Michael Oettinger, der – wo es Sinne macht – Stellung bezieht (z.B. ob Python oder R die geeignetere Programmiersprache ist) und wichtige Kriterien für die Technologie-Auswahl liefert. Die Breite der Anwendbarkeit von Data Science wird schön in seiner Branchenübersicht und der 20 Use Cases deutlich.

Und seine Zusammenfassung am Ende rückt wichtige Punkte für Data Science in der Praxis noch einmal in den Vordergrund: (1) Gespür für die Verfahren entwickeln; (2) Die Grenzen und die Grenzenlosigkeit verstehen; (3) No Excuses (!); (4) Mut zur Lücke; (5) Fantasie bei den Datenquellen, (6) Datenschutz ernst nehmen; und vor allem: (7) Einfach machen.

Solch ein Buch konnte wahrscheinlich nur ein Praktiker schreiben, der dennoch tief in der Materie drinsteckt, viel Erfahrung in zahlreichen Projekten sammelte und als Freiberufler und Unternehmer mit betriebswirtschaftlichem Hintergrund und Mathe-Schwerpunkt sowohl das Business als auch die Tools und Verfahren versteht.

Und, was mich als jemand mit einem Diplom in Psychologie besonders freut: Der sich auch für die menschliche Intelligenz interessiert.* Und die sollte aus mehreren Gründen bei einem Data Science Projekt immer dabei sein!

Herzliche Grüße, Stefan Klemens

* Auch Ralf Otte als bekannter Autor mehrerer Bücher zur Künstlichen Intelligenz geht in seinen sehr lesenwerten Büchern auf die menschliche Intelligenz ein – Bald erscheint die Neuflage seines Klassikers “Künstliche Intelligenz für Dummies”, wie ich kürzlich von ihm über eine E-Mail erfuhr.

Von Stefan Klemens

Stefan Klemens arbeitet als People & Digital HR Analyst und gründete Schorberg Analytics 2022. Der Diplom-Psychologe und ausgebildete Bankkaufmann ist seit 2006 im Human Resource Management mit dem Schwerpunkt Online-Assessment, Online-Befragung sowie Arbeit, Gesundheit und Persönlichkeit tätig. Zuvor war er Mitarbeiter an der Bergischen Universität Wuppertal im Fachbereich Arbeits- und Organisationspsychologie und Angestellter bei der Stadtsparkasse Düsseldorf. Seit 2020 fokussiert er sich auf People Analytics, Data Science und Künstliche Intelligenz. Weiter ist er Gründer und Administrator der LinkedIn-Gruppe "Wirtschaftspsychologie Region Düsseldorf" (bis 2022 auf XING). Eines seiner Hauptanliegen ist die Verbindung von Zahlen und Statistik mit Intuition und Heuristik für bestmögliche Entscheidungen im Human Resource Management.