Kategorien
Event

Tip: German Data Science Days 2024

Dear visitor!

In some of my recent newsblog articles (read those here and here) I collected 32 HR tech conferences and 13+1 HR & People Analytics Conferences.

And although this seems, with almost 50 conferences, as a collection covering many important data events, it cannot be complete of course (and I did not strive for it neither).

German Data Science Days 2024

Las friday I found another conference that might be of interest for you if you are working with data, statistics, and analytics – thus in the field of data science and in the case of HR data in HR & People Analytics (more or less HR data science, but this term is not used that often):

The German Data Science Days 2024.

Image: German Data Science Society (embedded)

The conference is dated March 7 – 8, 2024, and will take place at the Ludwig-Maximilians-Universität München (LMU Munich). It is organized by the German Data Science Society and has happened since 2018 (the society’s founding year) each year until 2023, which sums up to six conferences by now.

The 2024 conference includes topics and speakers like:

Alexander Haag, ERGO: “Navigating the fusion of AI generations in the insurance industry with ERGO’s AI Factory”

Monica Epple & Christian Pich, Swiss Re: “Navigating the future – How Swiss Re is unlocking data to drive innovation in reinsurance”

Jasmin Weimüller & Dr. Christoph Weisser, BASF: “How is BASF enabling its workforce to use generative AI & Co – Use cases and enablement” [Human Resources!]

Prof. Dr. Florian Stahl, Universität Mannheim: “The BERD data marketpace: A platform connecting companies, universities and research institutions and fostering the collaboration in research and innovation”

Michael Herter, infas 360: “Data Science für Städte und Kommunen”

Murat Topuz, Deutsche Bank: “Fighting financial crime with data analytics”

Karin Immenroth, RTL: “Mit KI in die datengetriebene Zukunft von RTL Deutschland”

Past Conferences 2018 – 2023

And if you look closely and open the pages of the past conferences form 2018 until 2023 you will not only find the programmes of these, but also the presentations (charts, slides) of almost all speakers as a PDF to download (and in one case as a Google Doc presentation).

Here are some sessions of past conferences:

Dr. Fabian Winter, Munich Re: “Data and Analytics at Munich Re” (2023)

Dr. Heide-Gesa Löhlein & Ibrahim Gökce, Telekom: “Personalization in Telecommunications: Mission Impossible?” (2023)

Christian Most, Lufthansa Group: “The Beauty of Complexity: Decision Support in Operations Steering” (2023)

Peter Mayer, Volkswagen AG: “Applying Computer Vision at Volkswagen Group IT” (2022)

Dr. Anca-Oxana Tudoran & Manuel Jockenhöfer, ProSiebenSat.1: “Data Science in the Media” (2022)

Ralph Müller-Eiselt, Bertelsmann Stiftung: „Wir und die Algorithmen – Beziehungsstatus: kompliziert” (2020)

Dr. Sebastian Fischer, Telekom Innovation Laboratories: „Lieber künstlich intelligent als natürlich dumm” (2020)

Dr. Urs Bergmann, Zalando: „Generative models in e-commerce” (2020)

Dominik Koch, Teradata: „The Data Scientists Survival Guide: 10 things that might save your next analytical project” (2020)

Dr. Stephanie Thiemichen, TÜV Süd: „Thinking outside of the box – building reliable and scalable data analytics products” (2020)

Final words

As said above you can find all sessions and many slides of the conferences 2018 bis 2023 on the website of the German Data Science Days. So check it out!

And remember: The next edition takes place in a couple of weeks in March 2024. So you may consider to visit this exiting data science event.

I wish you a pretty start in the new week!

Stefan Klemens

PS: Do you want to exchange ideas about human resource management, People Analytics, Digital Assessment, or Artificial Intelligence in HRM? Then network, send a message and/or schedule an online meeting. Or the classic way: a phone call.

And: Do you like my work and the content I regularly share? Then I’m happy about a Like or comment on LinkedIn. Thank you! 🙂 🙋‍♂️🌳

Kategorien
Human Resource Management

What kind of HR person are you?

Dear guest!

What kind of a HR person are you? (If you are one in the first place, if not, there are other funny, provoking or making-a-statement shirts for you as well like for data people, developers, …)

Well, whether you are into HR tech or not, you may feel like you are not like a regular Human Resources worker, but feel a little bit cooler (or colorful?). In this case I found today the shirt that probably suits your mindset – And you want to transmit it to the world:

Image: amazon.de (embedded)

https://www.amazon.de/nicht-normale-HR-cool-T-Shirt/dp/B0CLGZPTGX

Suggestion: Buy some for your HR department and organize your next HR party, barcamp or barbecue dressed with it. And no: I do not get a commission from Amazon in promoting this!

But hey, it is weekend and HR is fun, too! What do you think?

Cheers!

(Best read this post with a beer, glass of wine, or in case of preference for non alcoholic drinks with an exiting liquid of your choice :-))

Stefan Klemens

PS: Do you want to exchange ideas about human resource management, People Analytics, Digital Assessment, or Artificial Intelligence in HRM? Then network, send a message and/or schedule an online meeting. Or the classic way: a phone call.

And: Do you like my work and the content I regularly share? Then I’m happy about a Like or comment on LinkedIn. Thank you! 🙂 🙋‍♂️🌳

Credits for inspiration: A while a go I saw Daniel (DataDan) Mühlbauer 🤖🧭🧡🏳️‍🌈 with cool shirts (and caps and cups) on some pictures. So that is one source but surely there are more HR people like him with such clothing.

Kategorien
Textbooks

19 new Textbooks on HR Tech, Data & People Analytics

Dear visitor!

As you know the speed of the world has increased dramatically and the world wide web and the smart phone were important drivers for it.

Technology has also established itself as you know human resources management althought a little time later than in marketing for example. But HR tech or digital HR are not new in organizations anymore, and People Analytics as you may no has established itself as a cross-function in at least big organizations (more or less HR data science).

To keep up with developments in HR tech and HR & People Analytics and get inpiration for your work it is a good idea to exlore the book market from time to time. This I have done these days for you and me: I have collected in this newblog article 15 new books that cover these hot HR topics and which were published since June 2023.

Please note: The list is ordered by publication date (day-month-year) backwards; Translations into English with deepl.com; Images are embedded from their original source; If no remark in the note regardin a work all textbooks are published as first editions.

And: I will write some words or maybe a review like this about one or more of the selected works in the future. So stay tuned and connect with me on LinkedIn or contact me to keep in touch. Can’t wait? Then take a look on my previous newsblogs article with more cool HR tech stuff.

Let’s start!


#1:
Data-Driven Talent Management

Image: Kogan Page (embedded)

Basic information:

Author: Kristin Saling
Publication date: 03/08/2024 (Kogan Page), 27/08/2024 (amazon.de)
Publisher: Kogan Page
Language: English
Pages: 288
Price (print): 31.99 Euro (Paperback), 95.00 GBP (Hardback)
Website: https://www.koganpage.com/hr-learning-development/data-driven-talent-management-9781398615786

Note: A table of content is available online on the website. Kogan Page will be publish the textbook in August 2024 according to their website.

About the author:

Kristin Saling is Director at the Innovation Cell for the United States Army Human Resources Command where she enables the command to capitalize on the latest HR business practices and technologies.

See also this article about the unit: https://potomacofficersclub.com/news/us-army-using-data-ai-to-improve-workforce-management/

Source: Publisher; Web search

#2:
Predictive HR Analytics: Mastering the HR Metric

Image: Kogan Page (embedded)

Basic information:

Author: Daisung Jang, Martin Edwards, Kirsten Edwards
Publication date: 25/06/2024
Publisher: Kogan Page
Language: English
Pages: 536
Price (print): 50.50 Euro (Paperback), 170.86 GBP (Hardback)
Website: https://www.koganpage.com/hr-learning-development/predictive-hr-analytics-9781398615656

Note: A table of content is available online on the website. Kogan Page will be publish the textbook as the third edition in June 2024 according to their website.

About the authors:

“Martin R Edwards is an Associate Professor in Management at UQ Business School, University Queensland, Australia.

Kirsten Edwards is HR Lead for Advanced Analytics and Data Science at Rio Tinto and has over 20 years’ broad international experience in analytics, HR and management consulting, based in Queensland, Australia.

Daisung Jang has over 10 years’ experience of data analysis and is an expert on R. He is a lecturer in UQ Business School, University of Queensland, Australia.”

Source: Publisher

#3:
Creepy Analytics: Avoid Crossing the Line and Establish Ethical HR Analytics for Smarter Workforce Decisions

Image: McGraw Hill (embedded)

Basic information:

Author: Salvatore V. Falletta
Publication date: 23/02/2024
Publisher: McGraw-Hill Professional
Language: English
Pages: 288
Price (print): 29.29 Euro
Website: https://www.mhprofessional.com/creepy-analytics-avoid-crossing-the-line-and-establish-ethical-hr-analytics-for-smarter-workforce-9781265132675-usa

Note: Neither a book preview on the website is available, nor on Google Books. McGraw-Hill’s publishing date is shortly in one week as we read on its internet page.

About the author:

“Dr. Salvatore Falletta is a director and professor of Human Resource Leadership and Organizational Science at Drexel University. […] As a former chief human resources officer, head of Global HR Research and Analytics at a Fortune 100, and thought leader on this subject, Salvatore Falletta has witnessed first-hand the emergence of “creepy analytics” as a hot-button issue.”

Source: Publisher

#4:
HR Tech Strategy: Revolutionizing Employee Experience Through HR-Tech Synergy

Image: Business Expert Press (embedded)

Basic information:

Author: Marlene de Koning
Publication date: 30/01/2024
Publisher: Business Expert Press
Language: English
Pages: 214
Price (print): 34.92 Euro / 34.99 USD
Website: https://www.businessexpertpress.com/books/hr-tech-strategy-revolutionizing-employee-experience-through-hr-tech-synergy

Note: A Book preview from the title until page 23 plus “About the Author” and the back cover is available on the website.

About the author:

“Marlene de Koning is a director of HR Tech & Data at PwC, where she leads a team of HR tech and data specialists, who help clients drive workforce transformation, create data driven strategies and implement innovative technologies.”

Source: Publisher

#5:
Human Resource Management: People, Data, and Analytics

Image: Sage Publications (embedded)

Basic information:

Authors: Talya Bauer, Berrin Erdogan, David Caughlin, Donald Truxillo
Publication date: 19/01/2024
Publisher: Sage Publications
Language: English
Pages: 600
Price (print): 125.68 Euro (Loose-leaf), 157.39 Euro (Paperback)
Website: https://us.sagepub.com/en-us/nam/human-resource-management/book274799

Note: A table of contents of this second edition is available online on the website.

About the authors:

You can find detailed information about the authors on the website.

#6:
Recruiting Analytics: Mehr Erfolg mit Data Driven Recruiting und Talent Intelligence

Image: Haufe (embedded)

Basic information:

Authors: Marcel Rütten, Tim Verhoeven
Publication date: 02/01/2024
Publisher: Schäffer-Poeschel (part of Haufe Group)
Language: German
Pages: 168
Price (print): 49.99 Euro
Website: https://shop.haufe.de/prod/recruiting-analytics

Note: The table of contents of the book is available online and as a PDF on the website.

About the authors:

“Marcel Rütten has been working in HR management for over 15 years and is a widely known HR and recruiting expert as Global Talent Acquisition Lead, HR blogger and author. […]”

Source: Publisher

https://hr4good.com/marcel-ruetten

“Tim Verhoeven heads the Talent Intelligence team at Indeed in the DACH region and previously managed recruiting and personnel marketing at an international management consultancy. […]”

Source: Publisher

https://recruitingnerd.de

Kategorien
Data

30 Open Data Sources – Not only for HR & People Analytics

Dear visitor!

Data are at the heart of our society, technology, and organizations. In fact without data, tools to collect and methods to analyze and interpret them our ancestors would not have been able to follow the traces of wild animals for food and to grow plants and breed animals later.

And in the course of this what later was named the First Agricultural Revolution (Neolithic Revolution) cities were build which led to further use of numbers: With taxation as one of the most important (and still is from the state points of view).

Tip: I have collected some important terms around data in German with links, so you might check this page out as well.

The Scientific Revolution

The progress continued slowly but surely and exploded at the end of the Middle Ages and the beginning of the Renaissance with data-based inventions and explorations by people like Nicolaus Copernikus (see this ARTE Documentary about him and his fellow Georg Joachim Rheticus), Johannes Kepler, Tycho Brahe, Galileo Galilei, as well as Isaac Newton and Gottfried Wilhelm Leibniz.

Exact and systematic observation of natural events, the collection of these data over a long period, thinking about these and developing theories, testing these with experiments as well as the exchange and correspondence with other researchers marked the start of the Scientific Revolution and its scientific method which paved the way to the Industrial and Digital Revolution on wich all our knowledge and wealth is based on until today.

Standing on the shoulders of giants”, as Google often quotes, is as true as the onegoing efforts of many people today to solve the micracles of the universe and to answer open questions regarding our earth, our economy, and technological challenges.

Bricks without clay

“Data! data! data!” he shouted impatiently. “I can’t make bricks without clay.”

These words come from the mouth of Sherlock Holmes and the short story “The Adventure of the Copper Bleeches” by Arthur Conan Doyle, which was first published in The Strand Magazine in June 1892 – and which also appeared in the anthology “The Adventures of Sherlock Holmes” in October of the same year.

But let’s the master detective from London himself speak:

Video: Created with D-ID based on an image from Stable Diffusion.

Although the famous detective from London is a fictional character, for his time and even today, his approach is a prime example of how to solve a difficult task, a puzzle and a case: through precise observation, the collection of data, scientific methods and logical reasoning (deduction). In other words, a forerunner of the data scientist!

And every data scientist or people analyst – like Sherlock Holmes – needs data! Data! Data! Fortunately, technological progress since the 1990s with hardware such as computers, chips, the internet, smartphones and increasingly powerful software has led to huge mountains of data from which the valuable “data ore” now needs to be mined (technically: data mining).

Data as ores for knowledge and wisdom

Even if data does not have quite the same material significance as oil or gold, a comparison we read more often, it is still central to making decisions and translating results into action when it comes to the right selection, cleansing of raw data (interesting: similar to ore as a metal or mineral mixture and raw material), analysis and visualization.

Tip 1: See also the data science pyramid (DIKW) with the levels from bottom to top: World → Data → Information → Knowledge → Wisdom; (see e.g. Herter, 2022, “Was ist Data Science?”, p. 25, in Wawrzyniak & Herter (Eds.), Neue Dimensionen in Data Science: Interdisziplinäre Ansätze und Anwendungen aus Wissenschaft und Wirtschaft, Berlin – Offenbach: Wichmann/VDE). Note: Michael Herter is CEO of Bonn based data science company infas 360 GmbH.

Tip 2: A short practical book on data science in German has written Michael Oettinger (2020).
And: For Germany you might take also a look on the work of the German Data Science Society (GDS e. V.) and their event German Data Science Days taking place from March 7-8, 2024 in Munich. See also upcoming events of the Data Science Summit.

Origin of data I: Classification

Anyone who practices data science or people analytics (HR data science) therefore needs data. But where exactly does it come from? What sources are there? And how available is it?

Of course, organizations today primarily generate mass data (big data) as well as smaller amounts of data (small data): Here, data can be differentiated according to who or what it basically comes from and where it originates, such as:

  • Data from nature and agriculture (e.g. weather, soil, animals, plants)
  • Data from technical systems and machines (e.g. power plants, factories, vehicles)
  • Data from the economy, corporate management and the financial sector (macroeconomic figures, key business figures, taxes).

And what I am interested in as an HR data scientist or people analyst: data from people. More precisely: data from people in organizations – i.e. from employees, managers and trainees (HR data).

There are a number of other ways of classifying data, such as raw data, aggregated data or metadata, according to data type or file format or authorizations. However, it is important that such data classification takes place in accordance with the existing guidelines and is checked over time.

This is always personal data under data protection law, as is the case with customer data or patient data, which is subject to special legal protection.

Personal data also includes data that can be used to identify a person with reasonable effort, such as the license plate number, the account number or the personnel number, which are often used in databases as so-called primary and foreign keys.

Origin of data II: Internal sources

But let’s leave these information technology and legal aspects behind and return to the initial question: Where does the data come from?

Because as I said: (HR) data science and people analytics need to develop and implement solutions to HR challenges: Data.

Fortunately, a large amount of data is collected and stored within an organization today, which, together with other internal or external data, is available to the employee or external service provider for analysis.

Well, in the case of data science or people analytics projects, we usually have access to this data – even if it often involves a lot of effort, communication and processing; as well as to the relevant data sources of interest from business and human resources management such as databases, data warehouses or data lakes (or other modern architectures such as data lakehouses or data meshes). The relevant data is often also available as files (flat files) in various formats (e.g. cvs, xls, xml, json).

The development of data systems, the storage and use of data (transformation, extraction) is summarized under the term data engineering, which has led to the profession of data engineer, as the complexity of IT systems and the challenges posed by big data, IT system landscapes, software diversity and cyber security, for example, have grown significantly in the last 10 years.

The data from Human Resource Management (HR data for short) includes, for example, personnel master data and applicant data, wage and salary data, data on sick leave and fluctuation, data on qualifications and further training (e.g. e-learning) or on job satisfaction and employee management.

In the case of internal data from other areas of the company, HR data science and people analytics projects may be interested in communication data, company figures or working hours (e.g. overtime), depending on the issue at hand.

However, there are situations in which we do not have access to company data, but still need it for testing, training or demonstration purposes. What can we do? The solution: Public or open data!

Tip: For a comprehensive overview of these internal data sources and data from third parties (external data), see the short and practical reference book by Steffi Rudel (2021).

Origin of data III: External sources

There are a lot of external sources for data available which allow access of public or open data.

However, while there are many Internet offerings for a lot of data from politics, society, the environment, transport and health, to name but a few, real data on human resource management is very rare for obvious reasons of data protection and company secrecy.

However, there are some real and fictitious HR data sets that can be used for various purposes for data science and data analysis. For example, for practicing and learning, for testing hypotheses or for comparison with your own HR data.

External data from public, general and special sources with data on the labor market, employer ratings, customer satisfaction, demographic characteristics or the industry and market are also used for specific questions in an HR data science or people analytics project.

Image: First page of our list “30 Open Data Sources 2024 – Not only for HR & People Analytics.”

Schorberg Analytics and Stefan Klemens have collected 30 sources of public and open data in a PDF, which also contains links to a number of HR datasets: If you are interested in this collection contact Stefan Klemens via contact form, e-mail or LinkedIn message. [Please connect there and like three of my latest post, if you have not yet, or comment on it. Friends and supporters of Schorberg Analytics and Stefan Klemens get the PDF of course immediately!].

Kategorien
Zeitschrift

Personalmagazin 3/2024: Künstliche Intelligenz im Human Resource Management

Zeitschriftentipp: Künstliche Intelligenz im Human Resource Management

Lieber Gast!

HRler kennen und schätzen es: Das Personalmagazin von Haufe. In der Ausgabe 3/2024 legt es den Schwerpunkt auf Künstliche Intelligenz – und den “verantwortungsvoller Umgang mit KI-Systemen”.

Cover der Ausgabe 3/2024 vom Personalmagazin (Graphik eingebettet).

Denn gerade bei dem Hype um Generative Artificial Intelligence (GenAI), natürlich auch im HRM, sind einordnende Berichte wichtig:

https://www.haufe.de/personal/zeitschrift/personalmagazin/personalmagazin-ausgabe-32024-personalmagazin_48_615320.html

Eine gute Woche wünsche ich Dir/Ihnen!

Stefan Klemens

PS: Do you want to exchange ideas about human resource management, People Analytics, Digital Assessment, or Artificial Intelligence in HRM? Then network, send a message and/or schedule an online meeting. Or the classic way: a phone call.

And: Do you like my work and the content I regularly share? Then I’m happy about a Like or comment on LinkedIn. Thank you! 🙂 🙋‍♂️🌳

Kategorien
Events

32 HR Tech Conferences in 2024 – Part 1

Dear guest!

In this newsblog post I am presenting you 32 HR tech conferences from our list of 130+ HR events (see the newsblog for more). The following list covers events from February until June 2024. Another newsblog article that is coming soon will focus on the second half of 2024.

So stay tuned and connect with my on LinkedIn or via email to get informed! And: Please check also out my list 13 HR & People Analytics Conferences in 2024 if you are interested in these data driven HR topics.

Update 14/02/2024: +1 more HR tech conference added (33 now)

HR Tech Montreal 2024

Note: After April 2022 this conference will return this year. No date until now has been fixed yet, so check out the conference’s website for news.

Date: to be announced
Location: Montreal, Canada
Website: https://www.hrtechmtl.com

10th Annual HR Tech MENA Summit (HR Tech MENA 2024)

Date: February 19-21, 2024
Location: Dubai, UAE
Website: https://hrtechmena.com

Saatkorn Online Konferenz: Digitales Recruiting: innovative Software, KI und HR Analytics

Date: February 28, 2024
Location: virtual
Website: https://www.linkedin.com/events/7135260315050479616

Gloat Live 2024

Date: March 4-6, 2024
Location: New York City, USA
Website: https://resources.gloat.com/gloat-live-2024

The AI + HI Project

Date: March 4-6, 2024
Location: Moutain View, CA, USA
Website: https://conferences.shrm.org/ai-hi-project

Malaysia HR Tech Conference & Expo 2024

Date: March 5-6, 2024
Location: Kuala Lumpur, Malaysia
Website: https://malaysiahrtech.com

#HREdge24 – mehr Menschlichkeit durch mehr Tech (?)

Date: March 7, 2024
Location: Hamburg, Germany
Website: https://www.eventbrite.de/e/hredge24-mehr-menschlichkeit-durch-mehr-tech-tickets-722652421847

Transform 2024

Date: March 11-13, 2024
Location: Las Vegas, USA
Website: https://transform.us/conference

Rethink! HR Tech

Date: March 10-12, 2024
Location: Berlin, Germany
Website: https://www.rethink-hrtech.de

HRcoreLAB Summit

Date: March 13-14, 2024
Location: Barcelona, Spain
Website: https://www.hrcorelab.com